modelXGBoost

modelXGBoost(name='XGB', random_state=99, train_dir='', args, *kwargs)

XGBoost is an optimized distributed gradient boosting library designed to be highly efficient, flexible and portable. It implements machine learning algorithms under the Gradient Boosting framework. XGBoost provides a parallel tree boosting (also known as GBDT, GBM) that solve many data science problems in a fast and accurate way. The same code runs on major distributed environment (Hadoop, SGE, MPI) and can solve problems beyond billions of examples.

Parameters

"min_child_weight": [ Minimum sum of instance weight (hessian) needed in a child. "objective": learning task. "eval_metric": Evaluation metrics for validation data. "max_depth": Maximum depth of a tree. Increasing this value will make the model more complex and more likely to overfit "max_delta_step": /Maximum delta step we allow each leaf output to be. If the value is set to 0, it means there is no constraint. "sampling_method": The method to use to sample the training instances. "subsample": Subsample ratio of the training instances. Setting it to 0.5 means that XGBoost would randomly sample half of the training data prior to growing trees. and this will prevent overfitting. "eta": tep size shrinkage used in update to prevents overfitting. "gamma": Minimum loss reduction required to make a further partition on a leaf node of the tree. "lambda": L2 regularization term on weights. Increasing this value will make model more conservative. "alpha": L1 regularization term on weights. Increasing this value will make model more conservative. "tree_method": he tree construction algorithm used in XGBoost. "predictor": The type of predictor algorithm to use. "num_parallel_tree": umber of parallel trees constructed during each iteration. ...

Documentation

https://xgboost.readthedocs.io/en/latest/ https://www.analyticsvidhya.com/blog/2016/03/complete-guide-parameter-tuning-xgboost-with-codes-python/

Methods


FineTune(model, X, y, params, refit='Accuracy', cv=3, verbose=0, randomized=True, n_iter=100, mute=False)

Tcnica de Ajuste fino de hiperparametros.

Model: Modelo a Optimizar.

params: diccionario de parametros con el grid.

scoring: Metricas. scoring = {'AUC': 'roc_auc', 'Accuracy': acc_scorer} * Anotador de metricas: acc_score = make_scorer(accuracy_score, mean_squared_error)

refit: Metrica de importancia para optimizar el modelo'Accuracy'


FineTune_SearchCV(X=None, y=None, X_train=None, X_test=None, y_train=None, y_test=None, ROC=False, randomized=True, cv=10, n_iter=10, replace_model=True, verbose=0, nosplit=False, finetune_dir='')

None


GridSearchCV_Evaluating(model, param, max_param, min_score=0.5)

https://scikit-learn.org/stable/auto_examples/model_selection/plot_multi_metric_evaluation.html#sphx-glr-auto-examples-model-selection-plot-multi-metric-evaluation-py


KFold_CrossValidation(model, X, y, n_splits=10, ROC=False, shuffle=True, mute=False, logdir_report='', display=True, save_image=True, verbose=0)

Validacion cruzada respecto a "n_plits" del KFolds.


SeedDiversification_cv(X=None, y=None, X_train=None, X_test=None, y_train=None, y_test=None, n_iter=10, n_max=2020, cv=10, nosplit=False, finetuneseed_dir='', display=True, save_image=True, verbose=0)

None


add_model(model, random_state=99)

Incorporar modelo en la clase


class_report(y_true, predictions, clases, logdir_report)

Un informe de clasificacion se utiliza para medir la calidad de las predicciones de un algoritmo de clasificacion. Cuntas predicciones son verdaderas y cuntas son falsas. Ms especificamente, los Positivos verdaderos, los Positivos falsos, los negativos verdaderos y los negativos falsos se utilizan para predecir las metricas de un informe de clasificacion.

El informe muestra las principales metricas de clasificacion de precision, recuperacion y puntaje f1 por clase. Las metricas se calculan utilizando verdaderos y falsos positivos, verdaderos y falsos negativos. Positivo y negativo en este caso son nombres genericos para las clases predichas. Hay cuatro formas de verificar si las predicciones son correctas o incorrectas:

TN / Verdadero negativo: cuando un caso fue negativo y se pronostico negativo TP / Verdadero Positivo: cuando un caso fue positivo y predicho positivo FN / Falso negativo: cuando un caso fue positivo pero predicho negativo FP / Falso Positivo: cuando un caso fue negativo pero predicho positivo

La precision es la capacidad de un clasificador de no etiquetar una instancia positiva que en realidad es negativa. Para cada clase se define como la relacion de positivos verdaderos a la suma de positivos verdaderos y falsos.

TP - Positivos verdaderos FP - Positivos falsos

Precision: precision de las predicciones positivas. Precision = TP / (TP + FP)

Recordar es la capacidad de un clasificador para encontrar todas las instancias positivas. Para cada clase se define como la relacion entre los verdaderos positivos y la suma de los verdaderos positivos y los falsos negativos.

FN - Falsos negativos

Recordar: fraccion de positivos identificados correctamente. Recuperacion = TP / (TP + FN)

El puntaje F 1 es una media armonica ponderada de precision y recuperacion de modo que el mejor puntaje es 1.0 y el peor es 0.0. En terminos generales, los puntajes de F 1 son ms bajos que las medidas de precision, ya que incorporan precision y recuerdo en su clculo. Como regla general, el promedio ponderado de F 1 debe usarse para comparar modelos clasificadores, no la precision global.

Puntuacion F1 = 2 * (recuperacion * precision) / (recuperacion + precision)


compute_roc_auc(model, index, X, y)

Computo para todas las pruebas de KFold


confusion_matrix(y_true, y_pred)

None


create_ROC(lm, X_test, Y_test, targets=[0, 1], logdir_report='', display=True, save_image=True)

Se crea la curva ROC de las predicciones de conjunto de test.

Outputs: - df: Dataframe de los datos de metricas ROC. - auc: Area por debajo de la curfa ROC (efectividad de las predicciones).


create_ROC_pro(fprs, tprs, X, y, targets=[0, 1], logdir_report='', display=True, save_image=True)

Plot the Receiver Operating Characteristic from a list of true positive rates and false positive rates.


dataset(X, y, categorical_columns_indices=None, test_size=0.2, args, *kwarg)

None


eval_FineTune(X, y)

https://towardsdatascience.com/hyperparameter-tuning-the-random-forest-in-python-using-scikit-learn-28d2aa77dd74 https://github.com/WillKoehrsen/Machine-Learning-Projects/blob/master/random_forest_explained/Improving%20Random%20Forest%20Part%202.ipynb


eval_train(model, X, y, name='Performance')

None


evaluacion_rf_2features(data_eval, data_eval_target, targets=[0, 1], logdir_report='', display=True)

Funcion que nos selecciona el thresholder ms optimo:

Inputs:

Outputs:


evaluate(model, X, y)

Evalucion del modelo Fine-Tune


features_important(X, y, logdir='', display=True, save_image=False)

Explorar las features mas significativas


fit(X=None, y=None, X_train=None, X_test=None, y_train=None, y_test=None, mute=False, use_best_model=True, verbose=0, num_boost_round=100, nosplit=False, kwargs)

None


fit_cv(X=None, y=None, X_train=None, X_test=None, y_train=None, y_test=None, num_boost_round=75, nfold=5, use_best_model=True, verbose=2, nosplit=False, early_stopping_rounds=75, kwargs)

https://xgboost.readthedocs.io/en/latest/parameter.html


func_acc(prob_pred, y_target)

None


get_important_features(display=True)

None


get_model()

None


get_params_json()

None


heatmap_params(parameters, metric='mean_test_Accuracy')

parametres a relacionar: parameters = ["n_estimators", "min_samples_split"]


index_features(features)

None


load_model(direct='./checkpoints', name='catboost_model')

None


plot_Histograma(predict, correct, incorrect, logdir_report, categorias=[0, 1], display=True, save_image=True)

None


plot_confusion_matrix(y_true, y_pred, classes, num_clases, logdir_report, normalize=False, title=None, cmap=, name='cm_normalizada')

Una matriz de confusion es un resumen de los resultados de prediccion sobre un problema de clasificacion.

El numero de predicciones correctas e incorrectas se resume con valores de conteo y se desglosa por clase. Esta es la clave de la matriz de confusion.

La matriz de confusion muestra las formas en que su modelo de clasificacion se confunde cuando hace predicciones.

Le da una idea no solo de los errores que est cometiendo su clasificador, sino ms importante aun, de los tipos de errores que se estn cometiendo.

Es este desglose el que supera la limitacion del uso de la precision de clasificacion solo.


pred_binary(X, args, *kwargs)

None


predict(X, args, *kwargs)

None


replace_multiclass(targets)

None


restore_model(filename)

Load the model from disk


save_model(direct='./checkpoints', name='catboost_model')

Save the model to disk


set_dataset_nosplit(X_train, X_test, y_train, y_test, categorical_columns_indices=None, args, *kwarg)

None


update_model(kwargs)

None


validacion_cruzada(X, Y, n_splits, shuffle=True, scoring='accuracy')

Validacion cruzada del dataset introducido como input.

Inputs: - cv = Numero de iteraciones.

Outputs: - score: Media de los acc de todas las iteraciones.